副教授
教授
副教授
讲师
实验员系列
 
您当前所在位置:首页 >> 师资队伍 >> 副教授
副教授
===鄢小安资料===『返回』
姓名: 鄢小安    
职务: 职称: 副教授
办公电话: 025-85428405 通讯地址: 南京林业大学机电院3302室
电子邮箱: yanxiaoan@njfu.edu.cn 个人主页:
 教育背景与工作(挂职)经历:

时间

毕业院校

职称/学历

2022.07-至今

南京林业大学机械电子工程学院

副教授

2021.12-2023.12

澳门大学智慧城市物联网国家重点实验室

博士后研究员

2021.10-2023.12

南京林业大学机械电子工程学院

博士后研究员

2019.06-2022.06

南京林业大学机械电子工程学院

讲师

2015.09-2019.03

东南大学机械工程学院

博士

2012.09-2015.04

华北电力大学机械工程学院

硕士


 研究方向:

1. 高端装备状态监测与故障诊断 Condition Monitoring and Faults Diagnosis, CMFD

2. 机械系统动力学建模 Mechanical System Dynamics Modeling, MSDM

3. 信号处理与机器学习(Signal Processing and Machine Learning, SPML

4. 人工智能与模式识别(Artificial Intelligence and Pattern Recognition, AIPR

5. 故障预测与健康管理 Prognostics and Health Management, PHM

6. 结构损伤识别与健康监测 Structural Damage Identification and Health Monitoring, SDIHM


 科研项目:

科研情况简介

主要从事高端装备状态监测与故障诊断、机械系统动力学建模、信号处理与机器学习、人工智能与模式识别、故障预测与健康管理、结构损伤识别与健康监测等方面的研究工作。主持或参与国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省高校自然科学研究面上项目、校企合作课题等10余项,荣获河北省优秀硕士学位论文、江苏省优秀博士学位论文,同时入选“澳门青年学者计划”(2021年全国仅25人入选)、江苏省双创计划(科技副总类)、江苏省“双创博士”计划(世界名校类)。截至目前,共发表SCI收录论文60余篇,其中工程技术类TOP期刊35篇,ESI高被引论文6篇,入选领跑者5000F5000)中国精品期刊顶尖学术论文2篇,入选Editor's Choice Articles 1篇,申请发明专利15项(授权10项),参与编写教材2部,连续三年(2021~2023年)入选美国斯坦福大学发布的全球前2%顶尖科学家榜单。研究成果受到中国科学院院士、中国工程院院士、加拿大工程院院士、俄罗斯工程院外籍院士、长江学者、国家杰青、期刊主编、IEEE/ASME Fellow等国内外著名学者的关注、引用和正面评价,总引用次数达2730次(Google Scholar),h指数为28。现担任全国高校机械工程测试技术研究会在线检测分会理事、中国林学会林草智能技术和机器人分会理事、《动力学、监测与诊断学报》青年编委、《结构耐久性与健康监测》青年编委、《自动化与人工智能》青年编委、《中北大学学报自然科学版、Complexity》学术编辑等职位,同时被聘为镇江市科技咨询专家、山东省科技专家库省外专家、江苏省科技评估中心专家、国家自然科学基金函审专家、全国研究生教育评估监测专家库专家。担任IEEE TIE (一区top)IEEE TII (一区top)Information Fusion (一区top)MSSP (一区top), ECM (一区top)Applied Energy (一区top)Energy (一区top)Renewable Energy (一区top)KBS (一区top)ESWA (一区top)MMT (一区top)RESS (一区top)IEEE/ASME TMECH (二区top)IEEE TIM (二区top)SHM (二区top)ISA Transactions (二区top)Measurement (二区top)IEEE Sensors Journal (二区)Applied Acoustics (二区)、机械工程学报、自动化学报、仪器仪表学报、农业工程学报、振动与冲击、振动测试与诊断等50余种期刊应邀审稿人。

科研项目

序号

项目名称

项目性质

起止年度

1

波动工况下风力发电机轴承故障的深度变分自编码器诊断方法研究

国家自然科学基金青年项目(主持)

2021.01-2023.12

2

波动工况条件下滚动轴承智能故障诊断新方法研究

江苏省高等学校基础科学研究面上项目(主持)

2020.12-2022.12

3

基于数学形态学的旋转机械弱故障诊断方法研究

南京林业大学高层次人才科研基金(主持)

2020.12-2022.12

4

基于自适应时频分析的旋转机械故障诊断方法及应用研究

江苏省普通高校研究生科研创新计划项目(主持)

2017.07-2018.12

5

结构健康监测概率机器学习方法研究

澳门青年学者计划(主持)

2021.12-2023.12

6

基于深度学习的高端装备状态监测与故障诊断方法研究

江苏省双创博士计划(主持)

2020.09-2022.09

7

全自动灌装机运行参数在线监测与控制系统研究

江苏省科技副总项目(主持)

2021.08-2022.08

8

融合疲劳现象学与奇异谱分解的起重机损伤识别及寿命预测研究

国家自然科学基金面上项目(参与)

2017.01-2020.12

9

基于多传感器融合的大型起重机裂纹早期诊断的理论与方法研究

高等学校博士学科点专项科研基金资助项目(参与)

2014.01-2016.12

10

基于信息复用和传感器优化布置理论的机电设备故障诊断技术研究

国家自然科学基金面上项目(参与)

2011.01-2013.12

11

-网耦合作用下风力发电机传动系统故障机理与诊断方法研究

国家自然科学基金面上项目(参与)

2015.01-2018.12

12

电网冲击下超()临界汽轮发电机组轴系-叶片弯扭耦合振动特性的研究

国家自然科学基金面上项目(参与)

2011.01-2013.12

13

数学形态变换的振动信号分析方法研究

中央高校基本科研业务费专项资金资助项目(参与)

2012.09-2014.09

14

智能电机远程在线监控与维护系统开发

校企合作项目(横向课题)(参与)

2017.07-2018.12

15

江苏某风电场2MW风力发电机组振动测试分析

校企合作项目(横向课题)(参与)

2016.03-2016.06


 论文与专著:

发表论文情况:

1)以第一作者或通讯作者发表的学术论文(部分):

[1] Xiaoan Yan, Minping Jia*. Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 56-86.SCI一区TOP期刊,ESI高被引论文)

[2] Yan Xiaoan, Jia Minping*. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection[J]. Knowledge-Based Systems, 2019, 163: 450-471.SCI一区TOP期刊,ESI高被引论文)

[3] Xiaoan Yan , Minping Jia*. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing[J]. Neurocomputing, 2018, 313: 47-64.SCI二区TOP期刊,ESI高被引论文)

[4] Xiaoan Yan*, Daoming She, Yadong Xu. Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions[J]. Expert Systems with Applications, 2023, 216: 119479.SCI一区TOP期刊ESI高被引论文)

[5] Xiaoan Yan*, Wangji Yan, Yadong Xu, Ka-Veng Yuen. Machinery multi-sensor fault diagnosis based on adaptive multivariate feature mode decomposition and multi-attention fusion residual convolutional neural network[J]. Mechanical Systems and Signal Processing, 2023, 202: 110664.SCI一区TOP期刊)

[6] Xiaoan Yan*, Ying Liu, Yadong Xu, Minping Jia. Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity[J]. Renewable Energy, 2021, 170: 724-748.SCI一区TOP期刊)

[7] Xiaoan Yan*, Daoming She, Yadong Xu, Minping Jia. Deep regularized variational autoencoder for intelligent fault diagnosis of rotor–bearing system within entire life-cycle process[J]. Knowledge-Based Systems, 2021, 226: 107142.SCI一区TOP期刊)

[8] Xiaoan Yan*, Ying Liu, Minping Jia. Multiscale cascading deep belief network for fault identification of rotating machinery under various working conditions[J]. Knowledge-Based Systems, 2020, 193(4): 105484.SCI一区TOP期刊)

[9] Xiaoan Yan*, Ying Liu, Yadong Xu, Minping Jia. Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition[J]. Energy Conversion and Management, 2020, 225: 113456.SCI一区TOP期刊)

[10] Maoyou Ye, Xiaoan Yan*, Dong Jiang, Ling Xiang, Ning Chen. MIFDELN: A multi-sensor information fusion deep ensemble learning network for diagnosing bearing faults in noisy scenarios[J]. Knowledge-Based Systems, 2024, 284: 111294.SCI一区TOP期刊)

[11] Xiaoan Yan, Minping Jia*, Wan Zhang, Lin Zhu. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method[J]. ISA transactions, 2018, 73: 165-180.SCI二区TOP期刊)

[12] Xiaoan Yan, Minping Jia*, Zhuanzhe Zhao. A novel intelligent detection method for rolling bearing based on IVMD and instantaneous energy distribution-permutation entropy[J]. Measurement, 2018: 435-447.SCI二区TOP期刊)

[13] Xiaoan Yan*, Ying Liu, Minping Jia. Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder[J]. Structural Health Monitoring, 2020, 19: 1602-1626.SCI二区TOP期刊)

[14] Xiaoan Yan*, Wangji Yan, Ka-Veng Yuen, Zhixin Yang, Xianbo Wang. An adaptive variational mode extraction method based on multi-domain and multi-objective optimization for bearing fault diagnosis[J]. Structural Health Monitoring, 2023, 22: 2708-2733.SCI二区TOP期刊)

[15] Xiaoan Yan*, Ying Liu, Dongsheng Huang, Minping Jia. A new approach to health condition identification of rolling bearing using hierarchical dispersion entropy and improved Laplacian score[J]. Structural Health Monitoring, 2021, 20: 1169-1195.SCI二区TOP期刊)

[16] Xiaoan Yan*, Minping Jia. Bearing fault diagnosis via a parameter-optimized feature mode decomposition[J]. Measurement, 2022, 203: 112016.SCI二区TOP期刊)

[17] Xiaoan Yan*, Ying Liu, Minping Jia. Research on an enhanced scale morphological-hat product filtering in incipient fault detection of rolling element bearings[J]. Measurement, 2019, 147: 106856.SCI二区TOP

[18] Maoyou Ye, Xiaoan Yan*, Ning Chen, Ying Liu. A robust multi-scale learning network with quasi-hyperbolic momentum-based Adam optimizer for bearing intelligent fault diagnosis under sample imbalance scenarios and strong noise environment[J]. Structural Health Monitoring, 2023: 14759217231192363.SCI二区TOP期刊)

[19] Maoyou Ye, Xiaoan Yan*, Ning Chen, Minping Jia. Intelligent fault diagnosis of rolling bearing using variational mode extraction and improved one-dimensional convolutional neural network[J]. Applied Acoustics, 2023, 202: 109143.SCI二区期刊)

[20] Xiaoan Yan, Minping Jia*, Ling Xiang. Compound fault diagnosis of rotating machinery based on OVMD and a 1.5-dimension envelope spectrum[J]. Measurement Science and Technology, 2016, 27(7): 075002.SCI三区期刊)

[21] Xiaoan Yan*, Wan Zhang, Minping Jia. A bearing fault feature extraction method based on optimized singular spectrum decomposition and linear predictor[J]. Measurement Science and Technology 32.11 (2021): 115023.SCI三区期刊)

[22] Xiaoan Yan*, Ying Liu, Minping Jia. A fault diagnosis approach for rolling bearing integrated SGMD, IMSDE and multiclass relevance vector machine[J]. Sensors, 2020, 20(15): 4352.SCI三区期刊,入选Editor's Choice Articles

[23] Xiaoan Yan*, Xing Hua, Dong Jiang, Ling Xiang. A novel robust intelligent fault diagnosis method for rolling bearings based on SPAVMD and WOA-LSSVM under noisy conditions[J]. Measurement Science and Technology, 2024, 35(5): 056121.SCI三区期刊)

[24] Xiaoan Yan*, Daoming She, Yadong Xu, Minping Jia. Application of generalized composite multiscale Lempel-Ziv complexity in identifying wind turbine gearbox faults[J]. Entropy, 2021, 23(11): 1372.SCI收录)

[25] Xiaoan Yan*, Ying Liu, Minping Jia, Yinlong Zhu. A multi-stage hybrid fault diagnosis approach for rolling element bearing under various working conditions[J]. IEEE Access, 2019, 7: 138426-138441.SCI收录)

[26] Xiaoan Yan, Minping Jia*. Improved singular spectrum decomposition based 1.5-dimension energy spectrum for rotating machinery fault diagnosis[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(1): 50.SCI收录)

[27] 鄢小安, 贾民平*. 基于改进奇异谱分解的形态学解调方法及其在滚动轴承故障诊断中的应用[J]. 机械工程学报, 2017, 53(7): 104-112.EI收录,卓越期刊,入选领跑者5000中国精品期刊顶尖学术论文)

[28] 鄢小安, 贾民平*. 参数优化的组合形态-hat变换及其在风力发电机组故障诊断中的应用[J]. 机械工程学报, 2016, 52(13): 103-110.EI收录,卓越期刊)

[29] 鄢小安*, 贾民平. 基于参数自适应特征模态分解的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2022, 43(10): 252-259.EI收录,卓越期刊)

[30] 鄢小安*, 贾民平. 基于层次多尺度散布熵的滚动轴承智能故障诊断[J]. 农业工程学报, 2021, 37(11): 67-75.EI收录,卓越期刊)

[31] 鄢小安, 贾民平*. 自适应多尺度开闭平均-hat变换及在轴承故障诊断中的应用[J]. 东南大学学报(自然科学版), 2019, 49(05): 826-832.EI收录)

[32] 鄢小安*, 张知行. 基于LABVIEW的振动数据采集与分析系统设计[J]. 林业机械与木工设备, 2021, 49(10): 18-24.SCD期刊)

2)以第一作者(除导师外)或主要参与者发表的学术论文(部分):

[1] Yadong Xu, Ke Feng, Xiaoan Yan, Ruqiang Yan, Qing Ni, Beibei Sun, Zihao Lei, Yongchao Zhang, Zheng Liu. CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery[J]. Information Fusion, 2023, 95: 1-16.SCI一区TOP期刊,ESI高被引论文)

[2] Yadong Xu, Ke Feng, Xiaoan Yan, Xin Sheng, Beibei Sun, Zheng Liu, Ruqiang Yan. Cross-modal fusion convolutional neural networks with online soft label training strategy for mechanical fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2024, 20: 73-84.SCI一区TOP期刊)

[3] Xianbo Wang, Zhixin Yang, Xiaoan Yan. Novel particle swarm optimization-based variational mode decomposition method for the fault diagnosis of complex rotating machinery[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23(1): 68-79.SCI一区TOP期刊,ESI高被引论文)

[4] Yadong Xu, Xiaoan Yan, Ke Feng, Yongchao Zhang, Xiaoli Zhao, Beibei Sun, Zheng Liu. Global contextual multiscale fusion networks for machine health state identification under noisy and imbalanced conditions[J]. Reliability Engineering & System Safety, 2023, 231: 108972.SCI一区TOP期刊)

[5] Yudong Cao, Minping Jia, Xiaoli Zhao, Xiaoan Yan, Zheng Liu. Semi-supervised machinery health assessment framework via temporal broad learning system embedding manifold regularization with unlabeled data[J]. Expert Systems with Applications, 2023, 222: 119824.SCI一区TOP期刊)

[6] Yadong Xu, Yan Xiaoan, Beibei Sun, Jinhui Zhai, Zheng Liu. Multireceptive field denoising residual convolutional networks for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69: 11686-11696.SCI一区TOP期刊)

[7] Yadong Xu, Xiaoan Yan, Beibei Sun, Zheng Liu. Hierarchical multiscale dense networks for intelligent fault diagnosis of electromechanical systems[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.SCI二区TOP期刊)

[8] Yadong Xu, Xiaoan Yan, Beibei Sun, Zheng Liu. Deep coupled visual perceptual networks for motor fault diagnosis under nonstationary conditions[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4840-4850.SCI一区TOP期刊)

[9] Yadong Xu, Xiaoan Yan, Beibei Sun, Ke Feng, Yuejian Chen, Yifan Li, Hongtian Chen, Engang Tian, Qing Ni, Yulin Wang. Online Knowledge Distillation Based Multiscale Threshold Denoising Networks for Fault Diagnosis of Transmission Systems[J]. IEEE Transactions on Transportation Electrification, 2023.SCI一区TOP期刊)

[10] Yadong Xu, Xiaoan Yan, Ke Feng, Xin Sheng, Beibei Sun, Zheng Liu. Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery[J]. Reliability Engineering & System Safety, 2022, 226: 108714.SCI一区TOP期刊)

[11] Yadong Xu, Xiaoan Yan, Beibei Sun, Zheng Liu. Dually attentive multiscale networks for health state recognition of rotating machinery[J]. Reliability Engineering & System Safety, 2022: 108626.SCI一区TOP

[12] Wan Zhang, Xiaoan Yan, Minping Jia. Sparse enhancement based on the total variational denoising for fault feature extraction of rolling element bearings[J]. Measurement, 2022, 195: 111163.SCI二区TOP期刊)

[13] Daoming She, Jin Chen, Xiaoan Yan, Hu Wang, Hongfei Zhang, Michael Pecht. Deep multi feature dynamic adversarial diagnosis approach of rotating machinery[J]. Measurement Science and Technology, 2022, 33(12): 125023.SCI三区期刊)

[14] Peng Ding, Minping Jia, Xiaoan Yan. Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings[J]. Mechanical Systems and Signal Processing, 2021, 150: 107293.SCI一区TOP期刊)

[15] Yifei Ding, Minping Jia, Yudong Cao, Xiaoan Yan, Xiaoli Zhao, Chi-Guhn Lee. Unsupervised fault detection with deep one-class classification and manifold distribution alignment[J]. IEEE Transactions on Industrial Informatics, 2024, 20: 1313-1323.SCI一区TOP期刊)

[16] Yudong Cao, Minping Jia, Xiaoli Zhao, Xiaoan Yan, Ke Feng. Complex augmented representation network for transferable health prognosis of rolling bearing considering dynamic covariate shift[J]. Reliability Engineering & System Safety, 2024, 241: 109692.SCI一区TOP期刊)

[17] Yongjie Mao, Minping Jia, Xiaoan Yan. A new bearing weak fault diagnosis method based on improved singular spectrum decomposition and frequency-weighted energy slice bispectrum[J]. Measurement, 2020, 166: 108235.SCI二区TOP期刊)

[18] Ling Xiang*, Xiaoan Yan. A self-adaptive time-frequency analysis method based on local mean decomposition and its application in defect diagnosis[J]. Journal of Vibration and Control, 2016, 22(4): 1049-1061.SCI三区期刊)

[19] Aijun Hu, Xiaoan Yan, Ling Xiang*. A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J]. Renewable Energy, 2015, 83: 767-778.SCI一区TOP期刊)

[20] Daoming She, Jin Chen, Xiaoan Yan, Xiaoli Zhao, Michael Pecht. Diversity maximization based transfer diagnosis approach of rotating machinery[J]. Structural Health Monitoring, 2024, 23: 410-420.SCI二区TOP

[21] Duanwu Yang, Jinyong Wang, Xiaoan Yan, Liu Hongbin. Subway Air Quality Modeling Using Improved Deep Learning Framework[J]. Process Safety and Environmental Protection, 2022.SCI二区期刊)

[22] Wan Zhang, Minping Jia, Lin Zhu, Xiaoan Yan. Comprehensive overview on computational intelligence techniques for machinery condition monitoring and fault diagnosis[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 782-795.SCI二区期刊,卓越期刊,综述论文)

[23] 向玲*, 鄢小安. 汽轮机转子故障诊断中LMD法和EMD法的性能对比研究[J]. 动力工程学报, 2014, 34(12): 945-951.(一级学报,入选领跑者5000F5000)中国精品期刊顶尖学术论文)

[24] 向玲*, 鄢小安. 基于小波包的EITD风力发电机组齿轮箱故障诊断[J]. 动力工程学报, 2015, 35(03): 205-212.(一级学报)

[25] 向玲*, 鄢小安. 基于集成固有时间尺度分解和谱峭度的电机轴承故障检测[J]. 中南大学学报(自然科学版), 2016, 47(07): 2273-2280.EI收录)

申报专利情况:

[1] 鄢小安*; 叶茂友; 姜东; 陈宁; 刘英; 谢超. 一种基于强鲁棒性多尺度网络的机械故障诊断方法和系统, 2024-01-30, 中国, 202310063113.5.(发明授权)

[2] 鄢小安*; 姜东; 谢超; 刘英. 基于参数自适应特征模态分解故障诊断方法和系统, 2023-04-07, 中国, 202210571899.7.(发明授权)

[3] 鄢小安*; 谢超; 刘英; 姜东. 基于多尺度残差卷积变分网络故障诊断方法和诊断系统, 2023-04-07, 中国, 202210317326.1.(发明授权)

[4] 鄢小安*; 姜东; 刘英. 基于深度小波核变分自编码器的机械故障诊断方法和系统, 2022-05-26, 中国, 202210589411.3.(发明受理)

[5] 鄢小安*; 叶茂友; 姜东; 刘英; 陈宁. 基于多信息融合深度集成网络的故障诊断方法和系统[P]. 2023-09-13, 中国, 202311178807.X.(发明受理)

[6] 鄢小安*; 叶茂友; 谢超; 卢彦宇; 姜东. 基于增强型卷积神经网络的机械故障诊断方法和诊断系统, 2022-05-24, 中国, 202210567779.X.(发明受理)

[7] 鄢小安*; 卢彦宇; 谢超; 叶茂友. 基于深度残差变分自编码器的故障诊断方法和诊断系统, 2022-04-07, 中国, 202210359430.7.(发明受理)

[8] 贾民平, 鄢小安, 飞云, 胡建中, 黄鹏, 朱林, 张菀. 一种基于奇异谱分解的旋转机械故障诊断方法, 2019-03-19, 中国, 201610730284.9.(发明授权)

[9] 谢超; 朱泓宇; 鄢小安; 费叶琦; 刘英. 基于深度坐标注意力网络模型的图像超分辨率重建方法[P]. 2022-01-25, 中国, 202110399796.2.(发明授权)

[10] 谢超; 朱泓宇; 鄢小安; 汤浩; 刘英. 基于选择性通道处理机制的轻量级遥感图像超分辨率方法[P]. 2023-04-07, 中国, 202210784242.9.(发明授权)

[11] 贾民平*, 佘道明, 许飞云, 胡建中, 黄鹏, 鄢小安.  一种深度自编码网络的旋转机械健康评估方法[P]. 2020-03-31, 中国, CN201810736521.1.(发明授权)

[12] 贾民平*, 赵孝礼, 胡建中, 许飞云, 黄鹏, 佘道明, 鄢小安. 一种无监督深度学习网络的机械故障诊断方法[P]. 2020-03-31, 中国, CN201810949099.8.(发明授权)

[13] 马晨波; 陆志杰; 孙见君; 鄢小安; 张玉言; 韩权; 王志良; 刘德利. 一种滚动轴承早期微弱故障诊断方法[P]. 2023-09-06, 中国, 202311147203.9.(发明受理)

[14] 费叶琦, 鄢小安, 谢超, 陈天熙, 张豪, 赵朋飞. 齿轮品质检测装置[P]. 2022-11-22, 中国, 202221609162.1实用新型授权

[15] 向玲; 崔伟; 胡爱军; 鄢小安; 陈涛; 李淑东. 一种风力发电机组传动系统故障预警的方法, 2016-09-07, 中国, 201310414203.0.(发明授权)

[16] 向玲; 陈涛; 胡爱军; 鄢小安; 贾轶. 一种架空输电线路振动监测系统及监测方法[P]. 2015-04-01, 中国, 201410662722.3.(发明授权)

向玲; 胡思磊; 陈涛; 鄢小安. 一种输电线路巡线机器人[P]. 2014-11-12, 中国, 201420364744.7, (实用新型授权)


 教学工作:

主要讲授测试技术、数控技术、机电一体化系统设计等专业核心课程

 荣誉奖励:

1)IOP Outstanding Reviewer Awards(杰出审稿人奖)2023

2)江苏省仪器仪表学会“优秀科技工作者”,2023

3)澳门青年学者2021年全国仅25人入选)2021

4)江苏省双创才计划(科技副总类),2021

5)江苏省“双创博士”人才计划(世界名校类),2020

6)江苏省优秀博士学位论文,2020

7)导学生获得“江苏省大学生机器人大赛”一等奖,2020

8)指导学生获得“江苏省大学生机器人大赛”三等奖,2019

9)东南大学优秀毕业研究生,2018

10)江苏省省级“三好研究生”称号,2017

11)河北省优秀硕士学位论文,2015

12)校级优秀毕业生,2012

河北省“数学竞赛”一等奖,2012


『返回』