[1]. Wang ZD*, Li R, Chen MZ, Yang K, Sun ZG, Zhang XH, Tang S, Sun GF*. Enhanced wear and corrosion resistance of the laser direct metal deposited AISI 316L stainless steel by in-situ interstitial N alloying[J]. Optics & Laser Technology, 2024, 171: 110381. (SCI, JCRQ1) [2]. Wang ZD*, Chen MZ, Zhao, K, Li, R, Zong L, Zhang SB, Sun GF*. Effect of different feedstocks on the microstructure and mechanical properties of HSLA steel repaired by underwater laser direct metal deposition[J]. Materials Chemistry and Physics, 2024, 314: 128935. (SCI, JCRQ2) [3]. Chen MZ, Wang ZD, Wu EK, Yang K, Zhao, K, Shi JJ, Sun GF*, Han EH*. Electrochemical passivation behavior and surface chemistry of 316L stainless steel coatings on NV E690 steel fabricated by underwater laser direct metal deposition[J]. Corrosion Science, 2024, 229: 111882. (SCI, JCRQ1) [4]. Zhao K, Yang K, Chen MZ, Wang ZD, Wu EK, Sun GF*. Optimization of process parameters for gas-powder flow behavior in the coaxial nozzle during laser direct metal deposition based on numerical simulation. The International Journal of Advanced Manufacturing Technology, 2024, 130: 3967-3982. (SCI, JCRQ2) [5]. Yang K, Chen MZ, Zhao K, Jia ZY, Wang ZD, Qi H, Sun GF*. Research on gas pore formation and inhibition mechanism of high nitrogen steel during laser direct metal deposition[J]. Optics & Laser Technology, 2024, 175: 110788. (SCI, JCRQ1) [6]. Yang K, Wang ZD, Chen MZ, Qi H, Sun GF*. How the underwater environment affects the melt pool solidification during underwater laser direct metal deposition of HNS steel?[J]. Journal of Manufacturing Processes, 2023, 101: 892-903. (SCI, JCRQ1) [7]. Chen MZ, Yang K, Wang ZD, Zhao K, Wu EK, Shi JJ, Qi H, Sun GF*. Corrosion performance of NV E690 steel and 316L stainless steel coating fabricated by underwater direct metal deposition[J]. Corrosion Science, 2023, 219: 111232. (SCI, JCRQ1) [8]. Yang K, Chen MZ, Wang ZD, Zhao K, Yu LX, Sun GF *. Influence mechanism of underwater hyperbaric environment on the corrosion behavior of high nitrogen steel fabricated by underwater laser direct metal deposition[J]. Materials Today Communications, 2023, 37, 107614. (SCI, JCRQ2) [9]. Wang ZD, Wang SB, Yang K, et al. In-situ SEM investigation on the fatigue behavior of Ti-6Al-4V ELI fabricated by the powder-blown underwater directed energy deposition technique[J]. Materials Science & Engineering A, 2022, 838: 142783. (SCI, JCR Q1) [10]. Wang ZD, Yang K, Chen MZ, et al. Investigation of the microstructure and mechanical properties of Ti-6Al-4V repaired by the powder-blown underwater directed energy deposition technique[J]. Materials Science & Engineering A, 2022, 831: 142186. (SCI, JCR Q1) [11]. Wang ZD, Yang K, Chen MZ, et al. High-quality remanufacturing of HSLA-100 steel through the underwater laser directed energy deposition in an underwater hyperbaric environment[J]. Surface & Coatings Technology, 2022, 437: 128370. (SCI, JCR Q1) [12]. Wang ZD, Sun GF*, Chen MZ, et al. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance[J]. Additive Manufacturing, 2021, 39: 101884. (SCI, JCR Q1) [13]. Wang ZD, Sun GF*, Lu Y, et al. High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition[J]. Surface & Coatings Technology, 2021, 408: 126778. (SCI, JCR Q1) [14]. Wang ZD, Sun GF*, Lu Y, et al. Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel[J]. Surface & Coatings Technology, 2020, 385: 125403. (SCI, JCR Q1) [15]. Wang ZD, Lu Y, Sun GF*, et al. Effect of Ultra-sonic Peening on Laser-Arc Hybrid Welded NV E690 Steel[J]. Journal of Laser Applications, 2018, 30, 1-8. (SCI, JCR Q2) [16]. 王占栋, 王世彬, 吴二柯, 等. 水下定向能量沉积修复钛合金电化学腐蚀特性研究[J]. 中国激光, 2022, 49(14): 1402006. (EI) [17]. Sun GF*, Wang ZD, Lu Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022, 35: 1-19. (SCI, JCR Q1) [18]. Yang K, Wang ZD, Chen MZ, et al. Effect of pulse frequency on the morphology, microstructure, and corrosion resistance of high‑nitrogen steel prepared by laser directed energy deposition[J]. Surface & Coatings Technology, 2021, 421: 127450. (SCI, JCR Q1) [19]. Chai Q, Wang ZD, Fang C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J]. Surface & Coatings Technology, 2021, 422: 127494. (SCI, JCR Q1) [20]. Sun GF*, Wang ZD, Lu Y, et al. Numerical and experimental investigation of thermal field and residual stress in laser-MIG hybrid welded NV E690 steel plates[J]. Journal of Manufacturing Processes, 2018, 34, 106-120. (SCI, JCR Q1) [21]. Sun GF*, Wang ZD, Lu Y, et al. Investigation on microstructure and mechanical properties of NV E690 steel joint by laser-MIG hybrid welding[J]. Materials & Design, 2017, 127: 297-310. (SCI, JCR Q1) [22]. Chen MZ, Yang K, Wang ZD, et al. Quasi-continuous-wave laser directed energy deposition on inclined NV E690 steel plates: Melt pool and temperature evolution[J]. Surface & Coatings Technology, 2022, 437: 128344. (SCI, JCR Q1) [23]. Yan Q, Yang K, Wang ZD, et al. Surface roughness optimization and high-temperature wear performance of H13 coating fabricated by extreme high-speed laser cladding[J]. Optics & Laser Technology, 2022, 149: 107823. (SCI, JCR Q1) [24]. Chen MZ, Lu Y, Wang ZD, et al. Melt pool evolution on inclined NV E690 steel plates during laser direct metal deposition[J]. Optics & Laser Technology, 2021, 136: 106745. (SCI, JCR Q1) [25]. Zhan MJ, Sun GF*, Wang ZD, et al. Numerical and experimental investigation on laser metal deposition as repair technology for 316L stainless steel[J]. Optics & Laser Technology, 2019, 118: 84-92. (SCI, JCR Q1) |