讲师
教授
副教授
讲师
实验员系列
 
您当前所在位置:首页 >> 师资队伍 >> 讲师
讲师
===周磊资料===『返回』
姓名: 周磊    
职务: 职称: 讲师
办公电话: 通讯地址: 逸夫楼7A604
电子邮箱: leizhou@njfu.edu.cn 个人主页: https://orcid.org/0000-0001-5857-8153
 教育背景与工作(挂职)经历:

时间

毕业院校

学历

2013.09-2017.06

北京林业大学 工学院

本科

2017.09-2022.06

浙江大学 生物系统工程与食品科学学院

博士

2022.08-至今

南京林业大学 机械电子工程学院

博士后

2022.07-至今

南京林业大学 机械电子工程学院

讲师


 研究方向:

1. 深度学习、机器学习

2. 植物表型

3. 机器视觉、光谱分析

4. 林果采摘机器人

 科研项目:

序号

项目名称

项目性质

起止年度


1

深度学习时序表型分析驱动的番茄植株抗病性评估方法与机理研究

国家自然科学基金青年基金

2024.01-2026.12

主持

2

核桃、枸杞采收技术装备研发

十四五国家重点研发计划

2022.11-2027.10

参与

3

油茶空中轨道机器人采收

国家林草局应急科技揭榜挂帅"油茶采收机械研发"子课题

2022.08-2024.08

参与


 论文与专著:

[1] Zhou, L., Zhang, H., Bian, L., Tian, Y., & Zhou, H. (2024). Phenotyping of Drought-Stressed Poplar Saplings Using Exemplar-Based Data Generation and Leaf-Level Structural Analysis. Plant Phenomics, 6, 0205. (SCI, 一区)

[2] Zhou, L., Jin, S., Wang, J., Zhang, H., Shi, M., & Zhou, H. (2024). 3D positioning of Camellia oleifera fruit-grabbing points for robotic harvesting. Biosystems Engineering, 246, 110-121. (SCI, 一区)

[3] Zhou, L., Zhang, H., Bian, L., Zhao, Y., & Xiao, Q. (2024). A zero-shot deep learning-supported sensing system for crop seeds and berries phenotyping. IEEE Sensors Journal. (SCI, 二区)

[4] 周磊,张慧春,边黎明. 基于小样本学习和骨架提取算法的干旱胁迫杨树苗表型解析. 农业工程学报202440(19)177-185. (EI)

[5] 周磊,张慧春,边黎明. 零样本深度学习驱动的杨树叶片表型检测方法研究. 林业工程学报,20249(6)152-160.

[6] Zhou, L., Xiao, Q., Taha, M. F., Xu, C., & Zhang, C. (2023). Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning. Plant Phenomics, 5, 0022. (SCI, 一区)

[6] Zhang, C., Li, C., He, M., Cai, Z., Feng, Z., Qi, H., & Zhou, L*. (2023). Leaf water content determination of oilseed rape using near-infrared hyperspectral imaging with deep learning regression methods. Infrared Physics and Technology, 134, 104921. (SCI, 三区)

[7] Zhai, Y.#, Zhou, L.#, Qi, H., Gao, P., & Zhang, C. (2023). Application of Visible/Near-Infrared Spectroscopy and Hyperspectral Imaging with Machine Learning for High-Throughput Plant Heavy Metal Stress Phenotyping: A Review. Plant Phenomics, 5, 0124. (SCI, 一区)

[8] Zhang, C.#, Zhou, L.#, Liu, F., Huang, J., & Peng, J. (2023). Application of deep learning in laser-induced breakdown spectroscopy: a review. Artificial Intelligence Review, 56, 2789-2823. (SCI, 二区)

[9] 周宏平,金寿祥,周磊,等. 基于多模态图像的自然环境下油茶果识别. 农业工程学报20233910):175-182.

[10] 周宏平,金寿祥,周磊,等. 基于迁移学习与YOLOv8n 的田间油茶果分类识别. 农业工程学报202339(20)159-166.

[11] Zhou, L., Wang, X., Zhang, C., Zhao, N., Taha, M. F., He, Y., & Qiu, Z. (2022). Powdery Food Identification Using NIR Spectroscopy and Extensible Deep Learning Model. Food and Bioprocess Technology, 15(10), 2354-2362. (SCI, 二区)

[12] Zhou, L., Tan, L., Zhang, C., Zhao, N., He, Y., & Qiu, Z. (2022). A portable NIR-system for mixture powdery food analysis using deep learning. LWT, 153, 112456. (SCI, 一区)

[13] Zhang, C.#, Zhou, L.#, Xiao, Q., Bai, X., Wu, B., Wu, N., . . . Feng, L. (2022). End-to-End Fusion of Hyperspectral and Chlorophyll Fluorescence Imaging to Identify Rice Stresses. Plant Phenomics, 2022, 9851096. (SCI, 一区)

[14] Zhou, L., Zhang, C., Taha, M. F., Qiu, Z., & He, Y. (2021). Determination of leaf water content with a portable NIRS system based on deep learning and information fusion analysis. Transactions of the ASABE, 64(1), 127-135. (SCI, 四区)

[15] Tan, L.#, Zhou, L.#, Zhao, N., He, Y., & Qiu, Z. (2021). Development of a low-cost portable device for pixel-wise leaf SPAD estimation and blade-level SPAD distribution visualization using color sensing. Computers and Electronics in Agriculture, 190, 106487. (SCI, 一区)

[16] Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of Deep Learning in Food: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1793-1811. (SCI,一区,农林科学TOP5,高被引论文)

[17] Zhou, L., Zhang, C., Qiu, Z., & He, Y. (2020). Information fusion of emerging non-destructive analytical techniques for food quality authentication: A survey. TrAC - Trends in Analytical Chemistry, 127, 115901. (SCI, 一区)

[18] Zhou, L., Zhang, C., Taha, M. F., Wei, X., He, Y., Qiu, Z., & Liu, Y. (2020). Wheat Kernel Variety Identification Based on a Large Near-Infrared Spectral Dataset and a Novel Deep Learning-Based Feature Selection Method. Frontiers in Plant Science, 11, 575810. (SCI, 二区)

[19] Zhou, L., Qiu, Z. J., & He, Y. (2020). Application of WeChat mini-program and Wi-Fi SoC in agricultural IoT: A low-cost greenhouse monitoring system. Transactions of the ASABE, 63(2), 325-337.

[20] 周磊周宏平施明宏一种油茶果生长姿态检测方法, ZL 2022 1 1661768.4 (发明专利)

[21] Yong He; Zhengjun Qiu; Lei Zhou; Nan Zhao. Method and apparatus for measuring leaf nitrogen content, 2022-1-11, US202016878856 (国际专利)

[22] 裘正军周磊赵楠何勇一种测量植物叶片氮含量的方法和装置, CN201910645516.4 (发明专利)


 教学工作:

生产系统网络与通信、机械设计专业英语、现代设计方法、深度学习及其应用

『返回』