讲师
教授
副教授
讲师
实验员系列
 
您当前所在位置:首页 >> 师资队伍 >> 讲师
讲师
===王占栋资料===『返回』
姓名: 王占栋    
职务: 职称: 讲师
办公电话: 通讯地址: 林机楼
电子邮箱: jixiewangzd@163.com 个人主页:
 教育背景与工作(挂职)经历:

时间

毕业院校

学历

2011.09-2015.06

河北工业大学 机械工程学院

本科

2015.09-2022.06

东南大学 机械工程学院

硕博连读

2021.08-2021.12

National University of Singapore

CSC联培博士

2023.05-2025.12

南京工业大学 材料科学与工程学院

博士后

2022.08-至今

南京林业大学 机械电子工程学院

讲师

 研究方向:

1.激光增材制造

金属激光增材制造,又称“3D打印”,正深刻变革高端制造方式,课题组主要开展不同环境(陆上/水下)增材制造装备设计、工艺开发及性能分析,探索高性能增材制造新途径。

2.大型海工装备激光增材修复

面向海洋工程装备在严苛服役环境中易出现的腐蚀、磨损与疲劳损伤问题,课题组开展基于激光增材制造的原位修复研究,重点突破水下/高湿高盐环境下的工艺适应性、修复层冶金结合质量及力学性能调控等关键技术,旨在实现海工关键部件的高效、高可靠延寿再制造。

3.先进激光焊接

激光焊接作为一种高能量密度、高精度的先进连接技术,广泛应用于航空航天、轨道交通、新能源等高端制造领域。课题组聚焦于高强/异种金属材料的激光焊接工艺开发、接头组织性能调控及缺陷抑制机制研究,致力于提升焊接质量与服役可靠性,并拓展其在极端复杂环境下的应用潜力。

欢迎优秀本科生到课题组进行科研训练(大创、比赛等),开展本科毕业设计。

欢迎有志于从事增材制造、激光焊接、智能制造等研究的同学攻读本课题组硕士研究生。

 科研项目:

序号

项目名称

项目性质

起止年度

职责

1

水下增材制造干区构筑与质量调控

国自然青年基金C

2026.01-2028.12

主持

2

水下高压环境激光增材强韧耐蚀机理

国自然面上项目

2026.01-2029.12

参与

3

光气粉协同调控水下增材质量提升

中国博士后面上基金

2024.06-2026.05

主持

4

水下激光增材再制造装备与工艺

基础科研重点项目

2018.01-2022.09

参与

5

钛合金水下激光增材再制造组织性能

江苏省科研创新计划

2021.01-2022.01

主持

6

低合金高强钢水下激光增材工艺调控

前沿科技创新特区项目

2017.07-2019.06

参与

7

海工装备低应力焊接理论方法研究

江苏省产学研联合项目

2015.06-2018.06

参与


 论文与专著:

发表学术论文:

[1]. Wang ZD, Wang CK, Wu LZ, Jia ZY, Chen MZ, Lan HF, Sun GF*. High-performance on-line repair of subsea pipeline steel via underwater direct metal deposition: Microstructure evolution and mechanical properties. Materials Science & Engineering A, 951 (2026) 149592. (SCI, JCR Q1)

[2]. Yang K, Wang ZD, Lv BH, Chen MZ, Sun GF*. Enhancing high nitrogen steel fabricability via direct metal deposition: Phase transformation control and environmental condition optimization. Journal of Manufacturing Processes, 2026, 157: 315-334. (SCI, JCR Q1)

[3]. Ye ZY, Lv BH, Li R, Chen MZ, Wang ZD, Sun GF*, Han EH. Heat input regulation for geometric and property control in directed energy deposition with dense scan path strategy. Journal of Materials Processing Technology, 2026, 347, 119138. (SCI, JCR Q1)

[4]. Jia ZY, Li R, Chen MZ, Wang ZD, Sun GF*, Han EH. Effect of further precipitate refinement on mechanical properties and corrosion behavior of additively manufactured nickel aluminum bronze. Corrosion Science, 2025, 255, 113114. (SCI, JCR Q1)

[5]. Chen MZ, Wang ZD, Jia ZY, Xiang C, Pu JB, Sun GF*, Han EH. Enhanced corrosion resistance and gas pore-induced pitting mechanisms of CoCrFeMnNi high entropy alloy fabricated by underwater directed metal deposition with feedstock modification. Corrosion Science, 2025, 245: 112716. (SCI, JCR Q1)

[6]. Wang ZD, Chen MZ, Jia ZY, Li R, Sun ZG, Sun GF*. Tailoring the microstructure and surface properties of direct metal deposited 316L stainless steel by underwater ultrasonic impact treatment. Materials Science & Engineering A, 2025, 924: 147844. (SCI, JCR Q1)

[7]. Jia ZY, Wang ZD, Chen MZ, Zhao K, Sun GF*, Han EH. Tailoring microstructural evolution in laser deposited nickel-aluminum bronze alloy by controlling water cooling condition. Journal of Materials Processing Technology, 2025, 335, 118659. (SCI, JCR Q1)

[8]. Hu Y, Wang ZD, Chen MZ, Jia ZY, Bi KD, Sun GF*.Combination effects of laser heating and water cooling on the repair performance of Hastelloy C-276 by underwater laser direct metal deposition. Optics & Laser Technology, 2025, 180: 111534. (SCI, JCR Q1)

[9]. Wang ZD, Jia JY, Wu EK, Chen MZ, Sun GF*, Han EH. Evaluation of hydrogen embrittlement susceptibility of underwater laser direct metal deposited 316L stainless steel. International Journal of Hydrogen Energy, 2024, 82: 858-871. (SCI, JCR Q1).

[10]. Wang ZD*, Li R, Chen MZ, Yang K, Sun ZG, Zhang XH, Tang S, Sun GF*. Enhanced wear and corrosion resistance of the laser direct metal deposited AISI 316L stainless steel by in-situ interstitial N alloying[J]. Optics & Laser Technology, 2024, 171: 110381. (SCI, JCRQ1)

[11]. Wang ZD*, Chen MZ, Zhao, K, Li, R, Zong L, Zhang SB, Sun GF*. Effect of different feedstocks on the microstructure and mechanical properties of HSLA steel repaired by underwater laser direct metal deposition[J]. Materials Chemistry and Physics, 2024, 314: 128935. (SCI, JCRQ2)

[12]. Chen MZ, Wang ZD, Wu EK, Yang K, Zhao, K, Shi JJ, Sun GF*, Han EH*. Electrochemical passivation behavior and surface chemistry of 316L stainless steel coatings on NV E690 steel fabricated by underwater laser direct metal deposition[J]. Corrosion Science, 2024, 229: 111882. (SCI, JCRQ1)

[13]. Zhao K, Yang K, Chen MZ, Wang ZD, Wu EK, Sun GF*. Optimization of process parameters for gas-powder flow behavior in the coaxial nozzle during laser direct metal deposition based on numerical simulation. The International Journal of Advanced Manufacturing Technology, 2024, 130: 3967-3982. (SCI, JCRQ2)

[14]. Yang K, Chen MZ, Zhao K, Jia ZY, Wang ZD, Qi H, Sun GF*. Research on gas pore formation and inhibition mechanism of high nitrogen steel during laser direct metal deposition[J]. Optics & Laser Technology, 2024, 175: 110788. (SCI, JCRQ1)

[15]. Yang K, Wang ZD, Chen MZ, Qi H, Sun GF*. How the underwater environment affects the melt pool solidification during underwater laser direct metal deposition of HNS steel?[J]. Journal of Manufacturing Processes, 2023, 101: 892-903. (SCI, JCRQ1)

[16]. Chen MZ, Yang K, Wang ZD, Zhao K, Wu EK, Shi JJ, Qi H, Sun GF*. Corrosion performance of NV E690 steel and 316L stainless steel coating fabricated by underwater direct metal deposition[J]. Corrosion Science, 2023, 219: 111232. (SCI, JCRQ1)

[17]. Yang K, Chen MZ, Wang ZD, Zhao K, Yu LX, Sun GF *. Influence mechanism of underwater hyperbaric environment on the corrosion behavior of high nitrogen steel fabricated by underwater laser direct metal deposition[J]. Materials Today Communications, 2023, 37, 107614. (SCI, JCRQ2)

[18]. Wang ZD, Wang SB, Yang K, et al. In-situ SEM investigation on the fatigue behavior of Ti-6Al-4V ELI fabricated by the powder-blown underwater directed energy deposition technique[J]. Materials Science & Engineering A, 2022, 838: 142783. (SCI, JCR Q1)

[19]. Wang ZD, Yang K, Chen MZ, et al. Investigation of the microstructure and mechanical properties of Ti-6Al-4V repaired by the powder-blown underwater directed energy deposition technique[J]. Materials Science & Engineering A, 2022, 831: 142186. (SCI, JCR Q1)

[20]. Wang ZD, Yang K, Chen MZ, et al. High-quality remanufacturing of HSLA-100 steel through the underwater laser directed energy deposition in an underwater hyperbaric environment[J]. Surface & Coatings Technology, 2022, 437: 128370. (SCI, JCR Q1)

[21]. Wang ZD, Sun GF*, Chen MZ, et al. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance[J]. Additive Manufacturing, 2021, 39: 101884. (SCI, JCR Q1)

[22]. Wang ZD, Sun GF*, Lu Y, et al. High-performance Ti-6Al-4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition[J]. Surface & Coatings Technology, 2021, 408: 126778. (SCI, JCR Q1)

[23]. Wang ZD, Sun GF*, Lu Y, et al. Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel[J]. Surface & Coatings Technology, 2020, 385: 125403. (SCI, JCR Q1)

[24]. Wang ZD, Lu Y, Sun GF*, et al. Effect of Ultra-sonic Peening on Laser-Arc Hybrid Welded NV E690 Steel[J]. Journal of Laser Applications, 2018, 30, 1-8. (SCI, JCR Q2)

[25]. 王占栋, 王世彬, 吴二柯, . 水下定向能量沉积修复钛合金电化学腐蚀特性研究[J]. 中国激光, 2022, 49(14): 1402006. (EI)

[26]. Sun GF*, Wang ZD, Lu Y, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review[J]. Chinese Journal of Mechanical Engineering, 2022, 35: 1-19. (SCI, JCR Q1)

[27]. Yang K, Wang ZD, Chen MZ, et al. Effect of pulse frequency on the morphology, microstructure, and corrosion resistance of high‑nitrogen steel prepared by laser directed energy deposition[J]. Surface & Coatings Technology, 2021, 421: 127450. (SCI, JCR Q1)

[28]. Chai Q, Wang ZD, Fang C, et al. Numerical and experimental study on the profile of metal alloys formed on the inclined substrate by laser cladding[J]. Surface & Coatings Technology, 2021, 422: 127494. (SCI, JCR Q1)

[29]. Sun GF*, Wang ZD, Lu Y, et al. Numerical and experimental investigation of thermal field and residual stress in laser-MIG hybrid welded NV E690 steel plates[J]. Journal of Manufacturing Processes, 2018, 34, 106-120. (SCI, JCR Q1)

[30]. Sun GF*, Wang ZD, Lu Y, et al. Investigation on microstructure and mechanical properties of NV E690 steel joint by laser-MIG hybrid welding[J]. Materials & Design, 2017, 127: 297-310. (SCI, JCR Q1)

[31]. Chen MZ, Yang K, Wang ZD, et al. Quasi-continuous-wave laser directed energy deposition on inclined NV E690 steel plates: Melt pool and temperature evolution[J]. Surface & Coatings Technology, 2022, 437: 128344. (SCI, JCR Q1)

[32]. Yan Q, Yang K, Wang ZD, et al. Surface roughness optimization and high-temperature wear performance of H13 coating fabricated by extreme high-speed laser cladding[J]. Optics & Laser Technology, 2022, 149: 107823. (SCI, JCR Q1)

[33]. Chen MZ, Lu Y, Wang ZD, et al. Melt pool evolution on inclined NV E690 steel plates during laser direct metal deposition[J]. Optics & Laser Technology, 2021, 136: 106745. (SCI, JCR Q1)

[34]. Zhan MJ, Sun GF*, Wang ZD, et al. Numerical and experimental investigation on laser metal deposition as repair technology for 316L stainless steel[J]. Optics & Laser Technology, 2019, 118: 84-92. (SCI, JCR Q1)

 

出版学术专著:

[1]《水下局部干法激光增材再制造技术》,科学出版社,2025.

 

授权发明专利:

[1]. 水下钢筋与混凝土复合打印装置及方法. 专利号:ZL ZL 202510256652.X

[2]. 一种可实现水下高功率激光沉积连续作业装置与方法. 专利号:ZL202310027981.8.

[3]. 一种模拟水下环境激光加工的压力舱试验装置. 专利号: ZL202110310794.1.

[4]. 双超声辅助水下激光增材装置和方法. 专利号: ZL202010305092.X.

[5]. 一种在水下实施热处理的装置及方法. 专利号: ZL2019113237304.

[6].一种含有移动气氛室的激光头以及激光增材有色金属的方法. 专利号: ZL201910039760.6.

 教学工作:

机电测试技术、机电传动、机电系统设计

 荣誉奖励:

机电院青年教师授课竞赛二等奖(2023)

东南大学优秀毕业生(2022

博士研究生国家奖学金(2021

江苏省优秀硕士学位论文(2019

『返回』